Mises à jour
nouveaux termes :
déconstruction dimensionnelle ; espace de travail de la géométrie ; espace de travail géométrique ; espace de travail géométrique de référence ; espace de travail géométrique personnel ; espace de travail mathématique ; espace de travail mathématique de référence ; espace de travail mathématique idoine ; espace de travail mathématique personnel ; transposition informatique ; valeur épistémique ; visualisation iconique; visualisation non iconique
Update
A new page has been created dedicated to terms and expressions of research on learning and teaching mathematical proof [here]. This page is a working document of the Research Gate group "Proof in Mathematics Education: Reflection and Institutionalization". The first terms are :
Base argument; Classroom community; Empirical argument; Ensuing argument; Level of mathematical rigor; Proof; Proof threshold.

Les contributions sont bienvenues soit sous la forme de commentaires à la suite des définitions, soit sous la forme de nouvelles définitions (voir l'encadré ci-contre).

Contributions are welcome either as comments to the posts or as suugestion (see the frame on the right hand side).
[Draft of the English version]

Las contribuciones son bienvenidas, ya sea como comentarios siguientes definiciones, ya sea como nuevas definiciones (ver cuadro aquí-contra).

Nicolas Balacheff, CNRS, LIG Grenoble

Dictionnaire de didactique, English references

[lien vers les références francophones]

Balacheff N. (1998) Contract and Custom: Two Registers of Didactical Interactions (Translated and edited  by Patricio Herbst).  The mathematics Educator 9 (2) 23-29. [pdf]
Brousseau G. (1992) Didactique: what it can do for the teacher. In: Douady R., Mercier A. (eds) Research in didactique of mathematics. Selected papers (pp.7-39). Grenoble : La Pensée Sauvage. [abstract]
Brousseau G. (1997) Theory of didactical situations in mathematics. Dordrecht: Kluwer Academic Publishers [abstract]
Brousseau G., Brousseau N., Warfield V. (2014) Teaching fractions through situations: a fundamental experiment.  Dordrecht: Springer [abstract]
Brousseau G., Otte M. (1991) The fragility of knowledge. In: Bishop A. J., Mellin-Olsen S., van Dormolen J. (eds.) Mathematical knowledge: its growth through teaching (pp.13-36). Dordrecht: Kluwer Academic Publisher. [abstract]
Chevallard Y. (1992) Fundamental concepts in didactics: perspectives provided by an anthropological approach. In: Douady R., Mercier A. (eds) Research in didactique of mathematics. Selected papers (pp.131-167). Grenoble : La Pensée Sauvage. [abstract]
Douady R. (1985) The interplay between different settings. Tool-Object dialectic in the extendsion of mathematical ability. In: Streefland L. (ed.) Proceedings of the ninth international conference for the psychology of mathematics education - Vol.II (pp.33-52). The Netherland: State University of Utrecht. [PME proceedings]
Douady R. (1991) Tool, object, setting, window: elements for analysing and constructing didactical situations in mathematics. In: Bishop A. J., Mellin-Olsen S., van Dormolen J. (eds.) Mathematical knowledge: its growth through teaching (pp.109-130). Dordrecht: Kluwer Academic Publisher. [abstract]
Pepin B., Gueudet G., Trouche L. (2013) Re-sourcing teacher work and interaction: new perspectives on resource design, use and teacher collaboration. ZDM - The International Journal on Mathematics Education 45, 929-943. [pdf]
Sfard A. (1991) On the Dual Nature of Mathematical Conceptions: Reflections on Processes and Objects as
Different Sides of the Same Coin. Educational Studies in Mathematics, 22 (1) 1-36 [pdf]

Aucun commentaire:

Enregistrer un commentaire